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Supplementary Methods
Data collection
We assembled, for this project, a rich database of 210 different datasets from
five corpora with various levels of uniqueness and socio-demographic, survey,
and health attributes that would be reasonable quasi-identifiers.

The USA datasets are extracted from the 1-Percent Public Use Microdata
Sample (PUMS) files, a collection of 3,061,692 individual records from the 2010
US Census of Population and Housing. The PUMS files are available online
on the US Census Bureau website and contain 11 attributes we use: state FIP,
county, PUMA, number of vehicles, sex, date of birth, marital status, race,
educational attainment, employment status, and occupation.

The Adult Income dataset (ADULT) is a canonical Machine Learning dataset,
composed of 32,561 individuals from the 1994 US Census database. The ADULT
dataset is available in the UCI Machine Learning Repository and contain 10
nominal and ordinal attributes we use: age, workclass, education-num, marital-
status, occupation, relationship, race, sex, hours-per-week, and native country.

MERNIS is a complete population database of virtually all 48 million in-
dividuals born before early 1991 in Turkey, that was made available online in
April 2016 after a data leak from Turkey’s Central Civil Registration System.
Our use of this data was approved by Imperial College as it provides a unique
opportunity to perform uniqueness estimation on a complete census survey. Due
to the sensitivity of the data, we have only analyzed a copy of the dataset where
every distinct value was replaced by a unique integer to obfuscate records, with-
out loss of precision for uniqueness modeling. We have analyzed a sample of
8,820,050 individuals (district of Istanbul) using 8 attributes: year, month, and
day of birth, home city, district, address, and birthplace city and district.

The Histoire de vie (HDV) dataset is composed of 13,500 individual re-
sponses to a 2003 survey from the French National Institute of Statistics and
Economic Studies (INSEE), and available on INSEE’s website. After pre-
processing and removal of null responses, the dataset contains 632 attributes
we use for 8403 individuals.

Midlife in the United States (MIDUS) is a longitudinal survey of 7,108 in-
dividuals, comprising physical health, psychological well-being, and social vari-
ables. The survey files are available on the Inter-university Consortium for Po-
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litical and Social Research (ICPSR) website. After pre-processing and removal
of null responses, the dataset contains 415 attributes.

We also use the 5% PUMS files from 1990 to estimate the correctness of
Governor Weld’s re-identification and provide population uniqueness estimates
in Fig. 4 (Main Text), for which we used 15 attributes: ZIP code (inferred from
the PUMA code), date of birth (inferred from age), marital status, citizenship
status, class, occupation, mortgage, state of work, race, vehicle occupancy, time
of departure for work, sex, school, number of vehicles, number of own natural
born/adopted children.

Experiments to validate correctness
For each surveyed population D, we first infer the marginals distributions and
then the correlation matrix of the latent copula distribution. We measure the
uniqueness values ΞX (ground truth) and Ξ̂X . For a corpus C of C populations,
we report the uniqueness MAE as described in algorithm 2.

Algorithm 1 Sampling from the copula distribution
1: procedure SampleCopula(Σ,Ψ, n)
2: L← Cholesky(Σ) ▷ Lower matrix decomposition
3: for i← 1 to n do
4: for j ← 1 to d do
5: Draw zj ∼ N (0, 1)

6: x← Lz
7: u← (ϕ(x1), . . . , ϕ(xM ))
8: y(i) ← (F1(u1|Ψ), . . . , FM (uM |Ψ))

9: return (y(1),y(2), . . . ,y(n))

Algorithm 2 Model validation: Error on population uniqueness (no subsam-
pling)

1: procedure ValidationMAE(X,m)
2: for k ← 1 to m do
3: Ψ← marginal estimates from X
4: Σ← estimated copula correlation matrix from X
5: for i← 1 to n do
6: Draw y(i) ∼ q(·|Σ,Ψ)

7: Ξ̂k ← Uniqueness[y(1),y(2), . . . ,y(n)]

8: return 1
m

∑m
k=1

∣∣∣ΞX − Ξ̂k

∣∣∣

Subsampling experiments
For each surveyed population D, for each sampling fraction p, we select m = 100
samples S1, . . . ,Sm, containing nS = n × p individuals. We use an algorithm
similar to algorithm 2 to estimate the MAE distribution for a corpus C (algo-
rithm 3).
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Algorithm 3 Error on population uniqueness (training on a sample)
1: procedure SubsampleMAE(X,m, nS)
2: for k ← 1 to m do
3: XS ← sample nS records from X without replacement.
4: Ψ← marginal estimates from XS
5: Σ← estimated copula correlation matrix from XS
6: for i← 1 to n do
7: Draw y(i) ∼ q(·|Σ,Ψ)

8: Ξ̂k ← Uniqueness[y(1),y(2), . . . ,y(n)]

9: return 1
m

∑m
k=1

∣∣∣ΞX − Ξ̂k

∣∣∣
Brier score for a uniform method
If the same likelihood ξ̂x = p is assigned to every individual, the Brier Score
when predicting individual uniqueness is:

BS = Mean
[(

ξ̂x − ξx

)2
]

(1)

= ΞX Mean
[(

1− ξ̂x

)2
]
+ (1− ΞX)Mean

[(
0− ξ̂x

)2
]

(2)

= ΞX Mean
[
(1− p)2

]
+ (1− ΞX)Mean

[
(0− p)2

]
(3)

= ΞX (1− p)2 + (1− ΞX) p2 (4)

The lowest Brier score for a uniform likelihood is obtained when p = ΞX . In
that case, we have BS = ΞX (1− ΞX).

Brier scores for a random guess method
If ξ̂x ∼ U(0, 1) is uniformly drawn at random, the Brier Score when predicting
individual uniqueness is:

BS = Mean
[(

ξ̂x − ξx

)2
]

(5)

= ΞX Mean
[(

1− ξ̂x

)2
]
+ (1− ΞX)Mean

[(
0− ξ̂x

)2
]

(6)

= ΞX Mean
[
ξ̂x

2]
+ (1− ΞX)Mean

[
ξ̂x

2]
(7)

= Mean
[
ξ̂x

2]
(8)

=

∫ 1

0

u2 du = 1/3 (9)

Impact of specific attributes on individual uniqueness
In Fig. 3C, we evaluate the impact of specific attributes on William Weld’s
uniqueness. To do so, we train our copula model on the PUMS corpus for the
Massachusetts population (see Results).
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For each baseline attribute, (ZIP code, date of birth, or gender), we then
perform 1000 trials, randomly replacing the value of this attribute by a new
value sampled at random from its marginal distribution. For each trial, we
estimate uniqueness.

For each single additional attribute, we sample from the marginal distribu-
tion of this additional attribute, add the new value to the base characteristics
(58 year old male from Cambridge, MA), and estimate the uniqueness ξx using
the 3+1 attributes. We perform 1000 trials for each of the eleven additional
attributes.

Fig. 3C reports these scores of uniqueness, grouped by attribute: each box-
plot shows the distribution of uniqueness obtained after replacing (resp. adding)
a baseline (resp. additional) attribute. In order of appearance, the attributes
used from the PUMS corpus are ZIP code (ZCTAs extrapolated from PUMA
codes), gender (SEX variable in the PUMS corpus), date of birth (extrapolated
from AGE with random month and day), Race, citizenship (CITIZEN), school
enrollment (SCHOOL), vehicle occupancy (RIDERS), place of work – state
(POWState), mortgage (MORTGAGE), marital status (MARITAL), class of
worker (CLASS), number of vehicles (VEHICLES), occupation (OCCUP).
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Supplementary note 1: comparison with previous
work
While developed to estimate the likelihood of a specific re-identification to be
successful, our model can also be used to estimate population uniqueness. Pre-
vious approaches, based on extrapolations of the contingency table of a disclosed
random sample of the dataset, have been proposed to model population unique-
ness [1, 2, 3, 4, 5, 6, 7, 8]. A contingency table is here a d-dimensional table
where each cell (or class) counts the number of individuals with a specific com-
binations of the d attributes.

Using our previous notations, let |X | denote the number of potential combi-
nations of attributes, i.e. the true number of cells in the complete contingency
table. Fi (resp. fi) denotes the size of the ith cell in the contingency table
of X (resp. XS), with an arbitrary order on cells. We define Sk =

∑
i 1Fi=k

(the number of cells of size k in X) and sk =
∑

i 1fi=k (the number of cells of
size k in XS) while the empirical uniqueness of the population is ΞX = S1/n.
All of those methods then use parametric models, fitting a specific distribution
on the unordered frequency distribution of the contingency table, and estimate
the population uniqueness from the unordered estimated distribution of cell
frequencies.

Following studies comparing these estimators [1, 2, 4], we selected the most
promising methods to estimate uniqueness: the Ewens model [5], the Slide Nega-
tive Binomial (SNB) model [4], the Pitman mosdel [6], and the Zayatz model [7].

The Ewens model, based on the multivariate Ewens distribution, estimates
uniqueness as:

Ξ̂X =
s1 (nS − 1)

nS (n− 1)− s1 (n− nS)
(10)

The Zayatz model estimates uniqueness as:

Ξ̂X =
s1
nS

P(F = 1|f = 1) (11)

where P(F = i|f = 1) follows an hypergeometric distribution.
The Pitman model assumes:

Ξ̂X =
Γ(θ + 1)

Γ(θ + α)
nα−1 (12)

The α and θ parameters are estimated from the log-likelihood of the sampling
distribution, using Newton-Raphton.
The Slide Negative Binomial model assumes a translated negative binomial
distribution on the Fj frequencies (without zero count), such as:

Ξ̂X =
|X |
n

βα (13)

The parameters α, β are estimated from the sample by solving a system of two
non-linear equations, and |X | separately estimated from the sample.

We have implemented the original methods and verified the numerical results
using the open source ARX toolbox [9]. Sometimes, they do not converge or
estimate uniqueness above 1. We therefore limit scores to [0, 1] and, if a method
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does not converge on a specific sample (such as occasionally with the SNB
inference [1]), we do not make a decision and discard the sample. Taking a
conservative approach and assuming, e.g., that every individual is unique when
the method do not converge gives the same results below (P < 0.05 in 78 cases
out of 80 on Fig. 4). Specifically, the Pitman method estimates uniqueness to
be above 1.00 for 12.4% of all trials while the SNB (resp. Ewens) method do
not converge in 4.2% (resp. 1.1%) of all trials.

According to the literature, both the Pitman and SNB methods provide
accurate estimators of population uniqueness while the Pitman method provides
the best estimator for small sampling fractions [1]. We found that, while not its
primary goal, our method performs significantly better than all other approaches
(P < 0.05 in 78 cases out of 80). Fig. 4 compares the mean absolute error (MAE)
between empirical and estimated uniqueness for the four proposed methods and
ours. Several of the methods proposed in the literature severely under- or over-
estimate the risk of re-identification, especially when their parameters are fitted
on a small population sample. This is likely due to the fact that (i) fitting
specific distribution to frequency counts can inherently provide biased results
if inappropriate distributions are selected, (ii) fitting the frequency counts of
a population requires a lot more samples than for a multivariate model where
each marginal distribution is estimated separately.

Finally, Skinner and Holmes [8] and Skinner and Shlomo [10] have proposed
to use log-linear models to estimate the likelihood for sample unique records to
be population unique. Using the sample contingency table, these models can
smooth an estimator of population uniqueness, by taking into account the main
effects from the sample marginals.

A log-linear model is a generalized linear model (GLM) used to model count
data and contingency tables. It assumes that the response variable, the popula-
tion count Fx of an equivalence class x ∈ X (the number of individuals with the
record x in the population), follows a a specific count distribution (e.g. Poisson)
with mean λx, that is: Fx ∼ Po(λx). For a sampling fraction p, the sample
count fx also follows a Poisson distribution: fx ∼ Po(p λx).

In order to “borrow strength” [8] between equivalence classes, a GLM model
is fitted to the sample using the canonical logarithmic link:

logλx = zkβ (14)

where β is a 1 × q parameter vector, and zk a q × 1 vector of the main ef-
fects of each marginal attribute, and potentially low order interactions between
attributes. It yields an estimated individual likelihood of uniqueness:

ξ̂x = e−(1−p)λx (15)

We have implemented log-linear models on all studied corpora. The log-
linear models did not converge for 27 of the 210 studied populations (when
all sample records are sample unique, or share the same frequency, a GLM
cannot be fitted, as there is only one possible outcome). When they converge,
they obtain poor calibration with Brier scores, on average, 418% higher (lower
is better) than our copula-based method (and strictly worse for 210 out of
210 tested population). Fig. 12 shows the calibration of Poisson and Negative
Binomial log-linear models on a 1% sample. This is to be compared with Fig. 2B,
showing the calibration of our copula-based approach.
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Despite being an individual-level measure of uniqueness, log-linear mod-
els do not perform better at predicting individual uniqueness than simply us-
ing population uniqueness (assigning every individual x the overall population
uniqueness ξ̂x = Ξ̂X). For instance, a Poisson (resp. Negative Binomial) log-
linear model obtains Brier scores on average 56.4% (resp. 68.1%) higher than
the Zayatz method (see above), and 233% (resp. 291%) higher than the best
theoretically achievable prediction using only population uniqueness (for each
individual x, assigning ξ̂x = ΞX).

Supplementary note 2: correcting individual scores
using population uniqueness
In our experiments, we noticed a small numerical discrepancy between the mean
of the estimated likelihoods ξ̂x and the estimated population uniqueness. Specif-
ically, E[ξ̂x] > Ξ̂X in 66% of the tested populations (see Fig. 6). This is likely
due to numerical errors between (i) sampling a population of n individuals to
compute population uniqueness and (ii) sampling 1,000 individuals from the
original dataset and computing their estimated likelihood ξ̂x from q(x|Σ,Ψ)

(e.g. for 9M individuals, a uniqueness of ξ̂x = 0.90 corresponds to a small
probability q(x|Σ,Ψ) = 1.1710−8).

We test here whether the population-level method (ii) can be used to correct
(normalize) the individual likelihoods from method (i). Recall that, from a
sample S, we estimate both the average uniqueness Ξ̂X and the likelihood ξ̂x
for each individual x. We apply a correction factor α:

E[ξxα] = Ξ̂X (16)

and let ξ∗x = ξx
α be the corrected likelihood of uniqueness for the record x.

This correction reduces, for certain corpora (MERNIS, ADULT, HDV), the
false-discovery rate (Fig. 5) and provides an increased calibration (Fig. 7). How-
ever, we did not find enough evidence that the calibration helps and do not use
it in this manuscript.

Supplementary note 3: using the exact marginals
to improve predictions
As mentioned in the Discussion section of the main text, marginal distributions
can be inadequately modeled when the sample size is small. Our method can in-
corporate exogenous information such as better estimates for marginals. Table 2
compares the performance of our model when using approximate (inferred from
the given sample) and exact marginals (prior knowledge of the marginal dis-
tributions from the complete population). Using the exact marginals decrease
MAE when the sample is small.
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Supplementary note 4: testing for bias and het-
eroskedasticity in uniqueness prediction
Our estimate of uniqueness might be more accurate at lower or at higher unique-
ness. We therefore test for potential biases in our estimates for population
uniqueness (Ξ̂X) and for homoscedasticity of errors. We use general linear
mixed-effects models with restricted maximum likelihood (REML) on the esti-
mates given by our copula method at 100% sampling size. We control for corpus
effect by grouping observations by corpus (5 groups).

Overall, we find a statistically significant bias and heteroskedasticity, al-
beit both with negligible effects on uniqueness. Table 4 shows the results of
modeling Ξ̂X (32000 observations across corpora and repeated trials) and the
RMSE between ΞX and Ξ̂X (210 observations). Notably, there is not significant
difference between corpora.

We further test for potential bias and heteroskedasticity in the predicted
individual likelihoods of uniqueness. Table 5 shows the results of modeling ξ̂x
(210000 observations), grouped by corpus and population (210 groups), as well
as modeling the RMSE between ξx and ξ̂x, grouped by corpus (5 groups). The
results validate the homoscedasticity of errors and exhibit no significant bias.

Supplementary note 5: Sample unique records
and individual uniqueness
As described in the text, we do not take into account whether a record x is
unique in D. Our modeled uniqueness ξx = (1− p(x))n−1 depends only on the
probability to draw x in the population and on n, the number of individuals in
the population.

As D is sampled at random from the population, every record x that is
not unique in the sample D cannot be unique in the population (ξx = 0). We
therefore further evaluate the performances of our model only on records that
are sample unique. Table 6 shows the AUC and FDR scores when the model
is evaluated only on sample unique records, and Fig 8 the ROC curves for the
same experiment.

We therefore prefer to not restrict our predictions to sample unique records.
First, this keeps the method more robust e.g. if oversampling or sampling with
replacement were to have been used. In that case, we can never rule out that a
sample non-unique record is not unique in the population. Second, in order to
accurately measure the correctness κx of a matched record x, we need to ensure
that the model performs well for any record, sample unique or not. Indeed, if
9 other records match x in the population X, and 2 other records in the sam-
ple D (x sample non-unique), x still has a 1 chance out of 10 to be correctly
re-identified.

However, potential adversaries running a re-identification attack on a re-
leased sample will use this sample to train the model then estimate the unique-
ness of the sample records. Therefore, an adversary’s success at predicting
uniqueness can also be measured on both sample unique and non-unique records.
For this reason, we also provide the ROC curves for the five corpora, when the
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model is trained and tested on the same 1% sample (Fig 13). We update the
definition of ξx, the likelihood for an individual x to be unique in the population:

ξ(sample)
x =

{
(1− p(x))n−1 if x is unique in D
0 otherwise

(17)

This yields a higher accuracy, as sample non-unique records are never population
unique (perfect prediction).

Supplementary note 6: Multivariate mutual in-
formation
Our copula method takes into account the marginals and pairwise association
structure. While our model, when trained on the complete population, already
performs very well with an average MAE across corpora of 0.018 ± 0.019, more
complex models, capturing better the complete association structure between
attributes, might perform even better.

To investigate this, we compute the distribution of triplewise information
I(X;Y ;Z). Positive interaction information values denote redundant combi-
nations (X and Y share the same information about Z) and negative values
synergistic combinations (X and Y provide more information about Z together
than they do individually).

We perform 100 trials per corpus. For MERNIS, ADULT, and HDV, the
interaction factors are synergistic but very small, with an average mean ± s.d.
of −0.001 ± 0.035 (MERNIS), −0.017 ± 0.036 (ADULT), and −0.002 ± 0.009
(HDV). For USA and MIDUS, the interactions factors are redundant, with an
average mean ± s.d. of 0.309± 1.050 (USA) and 0.009± 0.152 (MIDUS).

Across all 500 trials, the triplewise interaction factors obtained are often null
or redundant, with I(X;Y ;Z) > −0.1nat in 94% of all trials. This suggest that,
at least for the five corpora we study, covering a broad range of uniqueness values
and association patterns, pairwise associations capture most of the information.

Supplementary note 7: Estimating population unique-
ness at extremely small sampling fractions for
large datasets
The MERNIS and USA populations contain respectively 8,820,049 and 3,061,692
individuals. Even a 0.1% sample still contains the records of thousands of in-
dividuals. We here study the performance of our method at extremely small
sample size for those two datasets.

Fig. 9A and C show that our model performs well until a sample size of
approximately 6400 records. Fig. 9B and D then show that, when using the
exact marginals, our models performs well even with as little as 200 records.
Indeed, at small sampling fractions, marginals with high entropy and therefore
many unique records, such as the “postal address” attribute in MERNIS, are
difficult to estimate without a few thousand records. Incorrectly inferring the
distribution of “postal address” with only 50 or 100 records can lead to a large
variance in population uniqueness estimates.
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Supplementary note 8: Error when modeling the
count distribution and the copula parameters
Our method to estimate individual uniqueness relies on a generative model for
p(x), the probability to draw a record x from the joint distribution X which
we call q(x). Figure 10 shows that the distribution of the Kullback–Leibler
divergence, a measure of distance between the true empirical distribution p(x)
and the estimated distribution q(x), is very small (1.59nats on average).

Fig. 11 furthermore shows that the estimated covariance matrix of the latent
copula distribution is not significantly biased, even at small sampling fractions
(pairwise correlations higher or lower, on average, than their value when trained
on 100% of the population). Similarly, the variance of the covariance error
decreases fast, showing signs of convergence after few hundred records.
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Supplementary Figure 1: Comparing empirical and estimated unique-
ness for every corpus. One boxplot represents one population, for which we
compare its empirical and estimated uniqueness values. For each population,
we run the model 100 times and display the median, the 25th and 75th per-
centiles for estimated scores. Whiskers show the maximum 1.5 interquartile
range (IQR). The panels (a) to (e) correspond to the corpora MERNIS, USA,
ADULT, HDV, MIDUS.
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Supplementary Figure 2: Absolute error when estimating population
uniqueness using 100% to 0.1% samples for every corpus. Boxplots (25,
50, and 75 quantiles and 1.5 IQR) show the MAE values for one subsampling
fraction across all populations. The y-axis shows both p, the sampling fraction,
and nS = p×n, the sample size. The panels (a) to (e) correspond to the corpora
MERNIS, USA, ADULT, HDV, MIDUS.
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Supplementary Figure 3: Re-identification receiver operating charac-
teristic (ROC) curves for every corpus. For each population, we train a
copula model on a 1% sample and measure the accuracy and recall of the result-
ing individual uniqueness likelihoods. A solid colored line represents the average
ROC curve and light curves the ROC curves for a single population. The inset
graph represents the false-discovery rate for individual records classified with
ξ > 0.9, ξ > 0.95, and ξ > 0.99. Not only does the method discriminates cor-
rectly between unique and non-unique records, but it also accurately classifies
records with the highest likelihood of successful re-identification. The panels
(a) to (e) correspond to the corpora MERNIS, USA, ADULT, HDV, MIDUS.
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Supplementary Figure 4: Comparing the performance of our model
against frequency-based re-identification risk models from the liter-
ature. Our model obtains a significantly lower MAE on every corpus and
sampling fraction but two (USA with 10% and 5% sampling compared to the
Ewens model). We report the MAE for average uniqueness precision (using
100 trials per population) and the p-value of the Wilcoxon signed-rank test,
comparing the performance of the copula model with other approaches (***
for P < 0.01, ** for P < 0.05, * for P < 0.1, and otherwise ns. when non
significant). The panels (a) to (e) correspond to the corpora MERNIS, USA,
ADULT, HDV, MIDUS.
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Supplementary Figure 5: False-discovery rate with original (left) and
corrected (right) scores for all five corpora. The copula model is trained
on a 1% sample, and the FDR scores are computed on 1000 records from the
original population.
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Supplementary Figure 6: Cumulative distribution of the deviation be-
tween average individual likelihood and predicted population unique-
ness. For each population (all corpora combined), we select 1000 individuals
from the original population, and compare their average likelihood with the
estimated population uniqueness (in blue). The dashed red line represents the
baseline null deviation after correction. The copula model is inferred on a 1%
sample from the original population.
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Supplementary Figure 7: Reliability diagrams for copula methods
trained on 1% samples. Calibration plots of mean predicted value vs. frac-
tion of positive outcomes (unique individuals). The solid lines are the copula
estimators ξ̂x, the dashed ones the corrected copula estimators ξ̂∗x and the diag-
onal lines represents an ideal predictor. We train copula methods on 1% samples
for each population, and report these measures for 1000 records per population.
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Supplementary Figure 8: Re-identification receiver operating charac-
teristic (ROC) curves for every corpus (only sample unique records,
to be compared with Fig 3). For each population, we train a copula model
on a 1% sample and measure the accuracy and recall of the resulting individual
uniqueness likelihoods, only evaluated on sample unique records. A solid col-
ored line represents the average ROC curve and light curves the ROC curves
for a single population. The inset graph represents the false-discovery rate for
individual records classified with ξ > 0.9, ξ > 0.95, and ξ > 0.99. The panels
(a) to (e) correspond to the corpora MERNIS, USA, ADULT, HDV, MIDUS.
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Supplementary Figure 9: At very small sampling fractions, the error
is mostly determined by the marginals. The boxplots show the mean
absolute error (MAE) for population uniqueness estimates, grouped by sample
size (from 50 to 6400 records). Panels A and C represent the absolute error
for the USA and MERNIS populations when the marginals are approximated
from the sample, while panels B and D are the absolute error using the exact
marginals (for USA and MERNIS respectively)
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Supplementary Figure 10: Kullback–Leibler divergence (in nats) be-
tween the empirical p(x) and estimated q(x) distributions for each
corpus. The copula method is trained on a 1% sample. Overall, the copula
method achieves small prediction errors, with a K-L divergence of 1.59 ± 1.78
nats overall.
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Supplementary Figure 11: The copula parameters converge quickly.
Left and right panels compare the covariance parameter Σ̂ estimated on 50
to 6400 records, with Σ estimated on 100% of the population. The boxplots
in panel A (resp. C) show the RMSE between Σ̂ and Σ for the USA (resp.
MERNIS) corpus. The boxplots in panel B (resp. D) show the bias between Σ̂
and Σ for the USA (resp. MERNIS) corpus. Both metrics are computed, for
each population, on every pair (i, j) of attributes.
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Supplementary Figure 12: Poor calibration achieved by log-linear
models. A blue point shows the Brier Score obtained by a log-linear model,
when trained on a 1% sample, and evaluated on sample unique records. The
panel (a) uses a Poisson log-linear model and the panel (b) a Negative Binomial
model. The solid line represents the lowest Brier Score achievable when using
the exact population uniqueness while the dashed line represents the Brier Score
of a random guess prediction (BS = 1/3). For 11% of all studied populations,
the model did not converge: we report these results with dots outside the right
margin.
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Supplementary Figure 13: Re-identification receiver operating char-
acteristic (ROC) curves for every corpus (all sample records, to be
compared with Fig 3). For each population, we train a copula model on
a 1% sample and measure the accuracy and recall of the resulting individual
uniqueness likelihoods, evaluated on all sample records (with sample non-unique
records assigned an individual uniqueness ξ̂x = 0). A solid colored line repre-
sents the average ROC curve and light curves the ROC curves for a single
population. The inset graph represents the false-discovery rate for individual
records classified with ξ > 0.9, ξ > 0.95, and ξ > 0.99. The panels (a) to (e)
correspond to the corpora MERNIS, USA, ADULT, HDV, MIDUS.
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Supplementary Table 1: AUC and FDR for the classification of indi-
vidual uniqueness. For each population, for 1000 individuals sampled at ran-
dom in the whole population, we estimate their individual uniqueness (method
trained on a 1% sample) and compare the predicted likelihood to the true value.
We report the AUC (mean ± s.d.) and the FDR per corpus and overall. We
also report the F-scores in Table 7.

False discovery rate (%)
Corpus c AUC ξ = 0.90 ξ = 0.95 ξ = 0.99

MERNIS 10 0.84 ± 0.05 11.40 7.88 3.80
USA 40 0.89 ± 0.06 7.43 5.26 1.99
ADULT 50 0.91 ± 0.05 15.62 12.37 7.62
HDV 50 0.97 ± 0.03 6.36 3.95 1.20
MIDUS 60 0.96 ± 0.02 5.91 3.91 1.55
Overall 210 0.93 ± 0.06 9.34 ± 4.12 6.67 ± 3.57 3.23 ± 2.65
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Supplementary Table 2: Error rates for predicting population unique-
ness (exact marginals). Mean absolute error (MAE) [mean ± s.d., in percent]
on estimated population uniqueness grouped by corpus. n denotes the popu-
lation size and c the corpus size (the total number of populations considered
per corpus). We do not evaluate the model when samples contain less than 50
records. Compared to Table 1 (Main Text), exact marginals provide lower error
rates for small sampling fractions.

MERNIS USA ADULT HDV MIDUS
Corpus n 8,820,049 3,061,692 32,561 8,403 7,108

c 10 40 50 50 60
Sampling 100% 0.029 ± 0.019 0.028 ± 0.026 0.018 ± 0.016 0.006 ± 0.009 0.018 ± 0.014
fraction 10% 0.029 ± 0.018 0.028 ± 0.016 0.020 ± 0.018 0.007 ± 0.008 0.029 ± 0.029

5% 0.029 ± 0.019 0.027 ± 0.016 0.020 ± 0.018 0.008 ± 0.009 0.030 ± 0.030
1% 0.029 ± 0.019 0.029 ± 0.016 0.021 ± 0.017 0.016 ± 0.015 0.032 ± 0.030

0.5% 0.029 ± 0.019 0.029 ± 0.016 0.023 ± 0.016
0.1% 0.029 ± 0.018 0.030 ± 0.017
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Supplementary Table 3: Within-population standard deviation (s.d.) for the
population uniqueness, for each corpus, grouped by sampling fraction (mean ±
s.d. for 100 trials). n denotes the population size and c the corpus size (the
total number of populations considered per corpus).

MERNIS USA ADULT HDV MIDUS
Corpus n 8,820,049 3,061,692 32,561 8,403 7,108

c 10 40 50 50 60
Sampling 100% 0.004 ± 0.002 0.004 ± 0.004 0.002 ± 0.001 0.003 ± 0.002 0.010 ± 0.005
fraction 10% 0.003 ± 0.003 0.004 ± 0.003 0.011 ± 0.006 0.009 ± 0.006 0.015 ± 0.007

5% 0.003 ± 0.003 0.004 ± 0.003 0.011 ± 0.006 0.013 ± 0.008 0.019 ± 0.008
1% 0.003 ± 0.003 0.005 ± 0.003 0.026 ± 0.014 0.023 ± 0.014 0.035 ± 0.015

0.5% 0.004 ± 0.003 0.005 ± 0.003 0.029 ± 0.012
0.1% 0.006 ± 0.003 0.008 ± 0.003
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Supplementary Table 4: REML-estimated mixed effects models for
Ξ̂X and for the RMSE between ΞX and Ξ̂X .

Dependent Variable Regressors Coef. Std. Err. CI 95%

Ξ̂X Intercept 0.003 0.005 (-0.007, 0.012)
ΞX 1.024 0.000 (1.023, 1.025)
Group effect 0.000 0.004

RMSE Intercept 0.015 0.004 (0.008, 0.022)
ΞX 0.014 0.005 (0.004, 0.023)
Group effect 0.000 0.002
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Supplementary Table 5: REML-estimated mixed effects models for
ξ̂x (grouped by corpus and population) and for the RMSE between ξx and ξ̂x
(grouped by corpus).

Dependent Variable Regressors Coef. Std. Err. CI 95%

ξ̂x Intercept 0.040 0.037 (-0.033, 0.112)
ΞX 0.934 0.106 (0.726, 1.141)
Group effect 0.055 0.018

RMSE Intercept 0.159 0.067 (0.028, 0.291)
ΞX 0.328 0.178 (-0.021, 0.677)
Group effect 0.004 0.035
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Supplementary Table 6: AUC and FDR for the classification of indi-
vidual uniqueness (only sample unique records, to be compared with
Table 1). For each population, for all individuals unique in the 1% training
sample, we estimate their individual uniqueness (method trained on a 1% sam-
ple) and compare the predicted likelihood to the true value. We report the AUC
(mean ± s.d.) and the FDR per corpus and overall.

False discovery rate (%)
Corpus c AUC ξ = 0.90 ξ = 0.95 ξ = 0.99

MERNIS 10 0.82 ± 0.05 11.53 8.38 4.83
USA 40 0.88 ± 0.05 7.19 5.01 1.85
ADULT 50 0.89 ± 0.04 15.90 12.80 7.22
HDV 50 0.95 ± 0.03 5.98 3.65 1.09
MIDUS 60 0.95 ± 0.02 6.17 4.22 1.68
Overall 210 0.92 ± 0.05 9.36 ± 4.29 6.81 ± 3.82 3.34 ± 2.61
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Supplementary Table 7: F-score for the classification of individual
uniqueness. For each population, for 1000 individuals sampled at random in
the whole population, we estimate their individual uniqueness (method trained
on a 1% sample) and compare the predicted likelihood ξ̂x to the true value ξx.
We report the F-score per corpus and overall. Bold scores indicate the highest
score per corpus. If the model must obtain a good balance between precision
and recall, the optimal threshold lies near ξ = 0.50. Yet, if the model must
obtain a low proportion of false positives, achieved by a small false-discovery
rate, Table 1 shows that this requires a higher cutoff, above ξ = 0.90.

MERNIS USA ADULT HDV MIDUS Overall
ξ cutoff
ξ = 0.10 0.72 0.87 0.76 0.75 0.81 0.78 ± 0.06
ξ = 0.20 0.75 0.88 0.78 0.78 0.83 0.80 ± 0.05
ξ = 0.30 0.76 0.89 0.79 0.79 0.84 0.81 ± 0.05
ξ = 0.40 0.77 0.89 0.80 0.80 0.85 0.82 ± 0.05
ξ = 0.50 0.78 0.90 0.81 0.79 0.86 0.83 ± 0.05
ξ = 0.60 0.78 0.90 0.82 0.78 0.85 0.83 ± 0.05
ξ = 0.70 0.76 0.91 0.82 0.76 0.84 0.82 ± 0.06
ξ = 0.80 0.73 0.90 0.82 0.72 0.82 0.80 ± 0.08
ξ = 0.90 0.64 0.87 0.80 0.63 0.77 0.74 ± 0.11
ξ = 0.95 0.51 0.83 0.76 0.52 0.71 0.67 ± 0.14
ξ = 0.99 0.21 0.69 0.64 0.33 0.55 0.48 ± 0.20
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